Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase.
نویسندگان
چکیده
Wild-type tobacco (Nicotiana tabacum L.) seed development was characterized with respect to architecture and carbohydrate metabolism. Tobacco seeds accumulate oil and protein in the embryo, cellular endosperm and inner layer of the seed coat. They have high cell wall invertase (INV) and hexoses in early development which is typical of seeds. INV and the ratio of hexose to sucrose decline during development, switching from high hex to high suc, but not until most oil and all protein accumulation has occurred. The oil synthesis which coincides with the switch is mostly within the embryo. INV activity is greater than sucrose synthase activity throughout development, and both activities exceed the demand for carbohydrate for dry matter accumulation. To investigate the role of INV-mediated suc metabolism in oilseeds, genes for yeast INV and/or hexokinase (HK) were expressed under a seed-specific napin promoter, targeting activity to the apoplast and cytosol, respectively. Manipulating the INV pathway in an oilseed could either increase oil accumulation and sink strength, or disrupt carbohydrate metabolism, possibly through sugar-sensing, and decrease the storage function. Neither effect was found: transgenics with INV and/or HK increased 30-fold and 10-fold above wild-type levels had normal seed size and composition. This contrasted with dramatic effects on sugar contents in the INV lines.
منابع مشابه
Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.
We have studied the molecular physiology of photosynthate unloading and partitioning during seed development of fava bean (Vicia faba). During the prestorage phase, high levels of hexoses in the cotyledons and the apoplastic endospermal space are correlated with activity of cell wall-bound invertase in the seed coat. Three cDNAs were cloned. Sequence comparison revealed genes putatively encodin...
متن کاملIn vitro carbohydrate stress: salicylic acid increases soluble invertase activity in Pistacia vera L. in vitro plantlets. Françoise Bernard *, Majid Baghai and Shirin Hadad Kaveh
The action of salicylic acid (SA) has been well investigated in plant resistance against pathogen attacks but its role may be extended to a more global anti-stress plant cell strategy. The expression of defense-related functions may be also enhanced by elevated hexose levels. To verify if there exists a relation between these two defense programs, SA effect on soluble acid invertase (EC 3.2.1.2...
متن کاملTargeting the AtCWIN1 Gene to Explore the Role of Invertases in Sucrose Transport in Roots and during Botrytis cinerea Infection
Cell wall invertases (CWIN) cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink, or subjected to a source/sink transition after infecti...
متن کاملIsolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues.
Three hexose transporters (VvHT3, VvHT4, and VvHT5) were cloned from Vitis vinifera L. and functionally characterized in the hexose transport-impaired Saccharomyces cerevisiae mutant EBY.VW4000. Both VvHT4 and VvHT5 facilitated glucose uptake, with K(m)s of 137 muM and 89 muM, respectively. VvHT3 was not functional in the yeast system but a VvHT3:GFP (green fluorescent protein) fusion protein w...
متن کاملSugar metabolism in developing lupin seeds is affected by a short-term water deficit.
A short-term water deficit (WD) imposed during the pre-storage phase of lupin seed development [15-22 d after anthesis (DAA)] accelerated seed maturation and led to smaller and lighter seeds. During seed development, neutral invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) have a central role in carbohydrate metabolism. Neutral invertase is predominant during early seed development (u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 55 406 شماره
صفحات -
تاریخ انتشار 2004